

Supported by

U.S. DEPARTMENT OF Office of Science

Is there any confinement degradation going to NSTX-Upgrade Elongation and Aspect Ratio

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Stefan Gerhardt

NSTX 2011 & 12 Research Forum ASC Breakout Session Wed. March 16th, B318 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Big Picture Description

- Aspect (A) ratio and elongation (κ) are the lowest order shape parameters in a tokamak...and their impact on the ST is the focus of R11-2.
- NSTX has a large database of confinement with A<1.55 and κ <2.4.
 - NSTX upgrade will run at larger values of both these parameters.
- It is hard to scan these parameters independently in NSTX.
 - Will be even harder in NSTX-U...this may be the last chance.
- Propose to do three scans:
 - A scan at fixed κ
 - at constant $I_{\rm P},$ and/or
 - at constant q (this very interesting for possible/inevitable decreased tearing stability at higher A)
 - κ scan at fixed A
 - at constant $I_{\text{P}},$ and/or
 - at constant q
 - Push to very high A and κ
- Goals:
 - 1: Confirm (or not) confinement and current drive assumptions used in Upgrade modeling.
 - 2: Study toroidal physics of confinement.
 - 3: Develop the shapes to be used in further XPs targeting R11-2, JRT, Upgrade support.

Limited Data Set Last Year Showed a Reduction in Normalized Confinement When A & κ Were Increased

- I_P=900 kA, B_T=0.45 T
- Some drop in β_N at higher A (for fixed P_{inj}).
- Big hit in q₉₅. (10->7.5)
- Confinement is degraded by ~10%.
 - H from 1.02 to 0.85.
- T_e is a bit lower, which hurts the NBCD.
- Data collected at the end of the run, when machine performance was sub-optimal.

NSTX-U Scenarios Need H>1.0 to Meet Non-Inductive Targets At High Current

- Free-boundary TRANSP calculations
 - $Z_{eff}=2, D_{FI}=0.$
- Scale the T_e profile and use neoclassical ion transport.
- Current profile is fully relaxed.
- All six sources at 90 kV.
- A=1.81, κ=2.9, gap_out=20 cm
 Large gap helps with off-axis NBCD.
- Can be fully non-inductive at 1000 kA with H~1.0.
- H=0.85 drops f_{NI} to ~70%.
- Want to get new/better confinement data in these configurations.

1.0 T, 1000kA, A=1.81, κ =3.0, R_{tan}=[50, 60, 70, 110, 120, 130] 90 kV Beams

In General, It is Hard to Scan A and κ Independently

• Fundamental Issue: the inner gap is not an independently controlled quantity.

Scan of Kappa At Fixed A. With Constant I_P or Constant q₉₅

Scan of A at Fixed Kappa With Constant I_P or Constant q₉₅

High aspect ratio limit set by the • PF-1A coil current limit.

Scan of A at fixed κ and I_P

XP Summary

- Part 1: Aspect Ratio Scan at Fixed Kappa
 - Base configuration: 700 kA, κ =2.7
 - Scan of A at fixed I_p (6 shots)
 - Scan of A at fixed q (6 shots)
- Part 2: Kappa Scan at Fixed Aspect Ratio
 - Scan of κ at fixed I_p (6 shots)
 - Scan of κ at fixed q (6 shots)
- Part 3: Go as close as possible to the A=1.8, κ=3 shape indicated earlier. (6 shots)
- Questions:
 - Fix 4 MW input power, or try to fix β ? May not be important if β scaling is weak.
 - Which of the turbulence diagnostics can handle the wide range of shapes?
 - How much lithium? Pick the amount thought representative of Upgrade operations?
- Analysis:
 - TRANSP for global confinement and current drive trends.
 - Turbulence measurements?
- Run time request: 1 day, possibly broken into two sub-sections.

